I say this because
-- It motivates and sketches statistical mechanics, which I expect is the most interesting topic to you given your specialty.
-- It elegantly makes a point that I think is very important about physics: that physics is _almost entirely_ mathematical. The remainder is just about constraining the math to reflect the possibilities that seem to be actually realizable in nature.
Of course there's a lot more to physics than is described here, and you'll want to study the particular phenomena that emerge -- that's the whole point. But I think that given your background, setting this perspective will allow you to ask the right questions when you approach a new topic, and allow you to go out of the normal order.
One more note about the nature of doing/understanding physics: a huge part of it is taking the right limit. Reasonably complicated systems described in the language of some theory are generally intractable to analyze exactly, or to draw general conclusions from, so you need to throw something away to make progress. Figuring out the right limit is the same as figuring out what details you can throw away while preserving the core phenomenon you're interested in.
I say this because -- It motivates and sketches statistical mechanics, which I expect is the most interesting topic to you given your specialty. -- It elegantly makes a point that I think is very important about physics: that physics is _almost entirely_ mathematical. The remainder is just about constraining the math to reflect the possibilities that seem to be actually realizable in nature.
Of course there's a lot more to physics than is described here, and you'll want to study the particular phenomena that emerge -- that's the whole point. But I think that given your background, setting this perspective will allow you to ask the right questions when you approach a new topic, and allow you to go out of the normal order.
One more note about the nature of doing/understanding physics: a huge part of it is taking the right limit. Reasonably complicated systems described in the language of some theory are generally intractable to analyze exactly, or to draw general conclusions from, so you need to throw something away to make progress. Figuring out the right limit is the same as figuring out what details you can throw away while preserving the core phenomenon you're interested in.